Watchdog
Watchdog.pk
🏠 Home
Twitter
Facebook
❓ About
Research
Research
📃 Articles
🔬 Corporate/Financial Research and Analysis
🔬 Economic/Social Research and Analysis
🔬 Political Research and Analysis
Economy
Economic/Social Indicators
🌐 Economic/Social Data and Indicators
🤞 Central Government Debt
🚢 International Trade (Imports/Exports)
🏭 Manufacturing of Goods
💸 Workers Remittances from Abroad
💵 Foreign Exchange Reserves (SBP and Banks)
🛒 Prices and Sensitive Price Index (SPI)
Finance
Finance
📈 PSX Stock/Share Position And Analysis (Companies)
📈 PSX Stock/Share Position And Analysis (Others)
💱 Exchange Rates Data and Analysis
💰 Market Treasury Bills
Corporate
Corporate
🆔 Company Profile
📃 Financial Statements and Ratio Analysis
📝 Narrative Financial Analysis
📒 Corporate Accounting/Financial Information and Analysis
📔 Corporate Accounting/Financial Information and Analysis (Comparative)
Machine Learning
Risk Management
Expected Credit Loss Model (ECLM) for Agriculture Sector of Pakistan
Expected Credit Loss Model (ECLM) Demonstration through TensorFlow
KSE-100 Index Estimate through Machine Learning
Economy
Estimating GDP Growth of Pakistan through Machine Learning
Population Estimate through Machine Learning
Solow growth model explains the relationshiop between labor, capital and technology and their impact on national output.
One of its functions suggests that output increases as capital increases and vice versa.
We used actual data of Pakistan economy to determine if this is actually true. Here output is GDP per capita and capital is Gross Capital Formation per person.
The resulting trendline inclines with the theory of Solow Model.
Year
Output
Capital
1960
82.54724
9.539271
1961
88.17241
14.868967
1962
89.83771
16.333760
1963
93.98868
19.626298
1964
103.53603
21.240379
1965
115.73776
24.846676
1966
123.90256
19.775967
1967
138.15438
23.072099
1968
146.97921
26.484872
1969
152.68050
22.525109
1970
172.61073
27.260416
1971
177.62717
27.766231
1972
151.76677
21.513721
1973
100.30028
12.969309
1974
135.23844
18.084109
1975
169.79123
27.552925
1976
193.83608
33.423809
1977
213.20455
41.083892
1978
243.46083
43.477368
1979
260.79904
46.618189
1980
303.44895
56.082832
1981
348.22390
65.376163
1982
368.21445
70.922616
1983
332.47595
62.504787
1984
349.12239
63.786472
1985
337.72601
61.872006
1986
334.84755
62.865423
1987
339.08484
64.881602
1988
379.13579
68.298324
1989
384.08642
72.636342
1990
371.57262
70.358660
1991
410.47402
78.098439
1992
427.57276
86.526788
1993
440.92932
91.793833
1994
433.28858
84.692421
1995
493.66150
91.552110
1996
502.78670
95.512668
1997
483.65293
86.666720
1998
470.24892
83.286726
1999
465.07576
72.388775
2000
533.86241
91.966504
2001
510.65681
86.793050
2002
499.86000
82.890592
2003
563.59434
94.447244
2004
649.80482
107.724718
2005
711.46994
135.757397
2006
873.77027
168.917263
2007
950.43279
178.558467
2008
1039.31208
199.608668
2009
1006.60399
176.653772
2010
1040.14226
164.389887
2011
1226.21531
173.149295
2012
1261.20896
190.139339
2013
1272.44106
190.323233
2014
1316.98096
192.743742
2015
1428.63762
224.396556
2016
1443.62501
224.547532
2017
1547.85341
249.117165
2018
1472.89313
241.915304
2019
1284.70204
200.551881